sollog

DM 02 본문

자기계발/Study

DM 02

Solmi Kim 2023. 9. 25. 23:38
728x90
반응형

TODAY’S QUESTION
 Is Propositional Logic Not Enough?
명제논리로는 충분하지 않습니까?
 What are quantifiers and how to use them?
 
P ROPOSITIONAL LOGIC NOT ENOUGH <삼단논법>
 If we have: (the Socrates Example)
 “All men are mortal.”
 “Socrates is a man.”
 Does it follow that
 “Socrates is mortal?”
 No.
 Can’t be represented in propositional logic.
 Need a language that talks about objects, their properties, and their relations.
 Later we’ll see how to draw inferences.
 Features
 Variables: 𝑥, 𝑦, 𝑧
 Predicates: 𝑃(𝑥), 𝑀(𝑥) (서술어)
 Quantifiers (to be covered in a few slides):
 Propositional functions
 generalization of propositions
 They contain variables and a predicate, e.g., 𝑃(𝑥)
 Variables can be replaced by elements from their domain
 Propositional functions // 명제 함수
 become propositions (and have truth values) when their variables are each replaced by a value from the domain (or bound by a quantifier, as we will see later).
 The statement 𝑃(𝑥) is said to be the value of the propositional function 𝑃 at 𝑥.
 Ex)
let 𝑃(𝑥) denote “𝑥 > 0” and the domain be the integers
– P(-3) is False.
– P(0) is False.
– P(3) is True.
– Often the domain is denoted by U. So in this example U is the integers.
 Propositional functions
 Ex) Let “x+ y= z” be denoted by R(x,y,z) Find these truth values:
– R(2,-1,5) is □. False
– R(3,4,7) is □. True
– R(x , 3, z ) is □. we don’t know
 
 Ex) Now let “x- y= z” be denoted by Q Find these truth values:
– Q(2,-1,3) is □. true
– Q(3,4,7) is □. false
– Q(x,3,z) is □. we don’t know
 Compound Expressions
 If 𝑃(𝑥) denotes “𝑥 > 0,” find these truth values: – 𝑃(3) ∨ 𝑃(−1) Solution: T
– 𝑃(3) ∧ 𝑃(−1) Solution: F
– 𝑃(3) → 𝑃(−1) Solution: F
– 𝑃(3) → ¬𝑃(−1) Solution: T
 Expressions with variables are not propositions and therefore do not have truth values.
– 𝑃(3) ∧ 𝑃(𝑦)
– 𝑃(𝑥) → 𝑃(𝑦)
– When used with quantifiers (to be introduced next), these expressions (propositional functions) become propositions. 😮
Quantifiers
 How to express “all” and “some”
– “All students are precious.”
– “Some students do not know that.”
 

*even : 짝수를 나타냄.

domain 영역이 유한하다고 (정해져있는 숫자) 가정하고,

** special

//Quantifiers의 우선순위

 
 
예시 1 / 해결책 solution
first . 전체 도메인 U를 결정한다.
solutions 1 .

  • 만약 이 반의 모든 학생을 U라고 하면,

C(x) 는 “x has taken a course C” 의 propositional function이라고 정의내리고, 다음 기호와 같이 번역할 수 있다.
solutions 2.
그러나 만약 모든 사람들을 U 라고 하면,
또한 S(x)로 “x is a student in this class “ 로 정의내리고, 다음 기호와 같이 번역할 수 있다.
 
 

예시 2 / 해결책 solution
Solution1:
우선, 이 수업의 모든 학생들을 U라고 하면,
다음과 같은 기호로 번역할 수 있다.
Solution2: 그러나 만약 모든 사람들이 U라면,
~~
 

 
소크라테스의 예시를 들어보자.
Mortal(x)는 “x is a mortal” 이라고 나타낸다.
전제:
모든 남자는 Mortal이다.
Man(소크라테스)
결론
Mortal (Socrates)
 Equivalences in Predicate Logic // 술어 논리의 동치
 Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value
 notation 𝑆 ≡ T
 
 

  • Conjunctions(그리고 ) / Disjunctions (또한)

모든 P(x)의 경우 = 그리고 AND 로 연결
어떤 하나의 P(x)의 경우 = 또는 OR 로 연결
 
 

표현된 식을 부정하기
 The rules for negating quantifiers are:
 

*addictive 더했을 때 상쇄가 되는

 
 
Define P(x,y) : x * y  = 0 의경우

 
Define P(x,y) : x /  y  = 1 의경우

728x90
반응형

'자기계발 > Study' 카테고리의 다른 글

[MIPS] QtSpim - Assembly Languages  (0) 2023.10.12
Instruction Set Completeness  (2) 2023.10.10
DM 01  (0) 2023.09.25
Computer Architecture_Adressing mode  (0) 2023.09.20
CA_study_1  (0) 2023.09.19